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Hint:This exercise sheet is concerned with dynamic programming. A complete description of a dynamic
program always includes the following aspects (important also for the exam!):

1. De�nition of theDP table:What are the dimensions of the dynamic programming table DP[., .]?
What is the meaning of each entry (in clearly worded words)?

2. Calculation of an entry: Which values of the table are initialized, and how are they initialized?
How are entries calculated from other entries? What are the dependencies between entries?

3. Calculation order: In what order can you calculate the entries so that these dependencies are
ful�lled?

4. Reading the solution: How can the solution be read out from the table at the end?

Exercise 9.1 Longest Ascending Subsequence.

The longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. The subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm as described in class or the script to �nd the length of a
longest ascending subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

Solution: We represent the solution by two tables, DP1 and DP2. DP1[i] contains the length of the
longest subsequence ending at index i, and DP2[i] contains the index of the previous entry in the
subsequence.

DP1 = 1 1 2 1 2 3 4 4 3 3 3 4 5 6 6 7 8 4 7 5

DP2 = 0 0 2 0 4 5 6 6 5 5 5 10 11 12 12 14 15 10 14 11



The longest subsequence can be found at index 16. From DP1[16] and DP2[16], the longest ascending
subsequence is 1, 4, 6, 10, 12, 13, 17, 20, and it has length 8.

Exercise 9.2 Longest Common Subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. The subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm as described in class or the script to �nd the length of a
longest common subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

Solution: DP table:

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 1
2 0 0 0 0 0 1 1 1 2 2 2
3 0 1 1 1 1 1 1 1 2 2 2
4 0 1 1 1 1 1 1 2 2 2 2
5 0 1 1 1 2 2 2 2 2 2 2
6 0 1 1 1 2 2 2 2 2 3 3
7 0 1 1 1 2 2 2 2 2 3 4
8 0 1 1 1 2 2 3 3 3 3 4

To �nd some longest common subsequence, we create an array S of length DP [n,m] and then we start
moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by de�nition of DP table, DP [i− 1, j − 1] = DP [i, j]− 1 and A[i− 1] = B[j − 1], so we
assign S[DP [i− 1, j − 1]]← A[i− 1] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we �nd the following longest common subsequence: S = [7, 6, 4, 5].

Exercise 9.3 Gym Schedule (1 Point).

Alice likes to lift weights at the gym and wants to schedule her gym going for the next N days. Each
day, Alice either goes to the gym or not, so a schedule can be thought of as a list of length N where the
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ith entry contains whether or not Alice goes to the gym that day. Alice cannot go to the gym on two
consecutive days, or else she will become too fatigued.

Use dynamic programming to help Alice calculate the number of di�erent gym schedules under this
constraint. Note that one valid schedule is that Alice will not go to the gym at all during those N days.

Solution:

De�nition of the DP table:DP is an array of length n (indexed starting with 1). DP [i] contains the
number of possible shedules if there are i days.

Calculation of an entry: Initialize DP [1] to 2: Alice can either go to the gym or not on day 1. Initialize
DP [2] to 3: Alice can go on the �rst day or go on the second day or go on neither day.

An entry i > 2 can be calculated as follows: DP [i] can be calculated by adding up the number of
possible shedules if Alice goes to the gym on day i plus the number of possible shedules if she does not
go on day i.

• If Alice does not go to the gym on day i, this places no restriction on the shedules, so the number
of possible shedules in this event is D[i− 1].

• If Alice does go to the gym on day i, she can’t go to the gym on day i−1. We’ve placed a restriction
on day i − 1 and i but not on any days before that, so the number of possible schedules in this
case is equal to D[i− 2].

Then, DP [i] = DP [i− 1] +DP [i− 2].

Calculation order: We can calculate the entries of DP from smallest to largest.

Reading the solution: All we have to do is read the value at DP [N ].

Exercise 9.4 Black and White Stones (2 Points).

Two friends named Tim and Gordon play a game. They takes turns drawing stones from a bag. The bag
contains black stones and white stones. Whoever draws the �nal black stone wins the game. The bag
is opaque and the stones are indistinguishable by touch—thus, Tim and Gordon draw stones from the
bag randomly without knowing their color in advance. Tim always draws �rst. The bag is guaranteed
to contain at least one black stone.

Describe a dynamic program to determine the probability that Tim will win the game, if it is played
with m black stones and n white stones.

Solution:

De�nition of the DP table: Let DP be a dynamic programming table of size m + 1 × n + 1. When
i ≥ 1, DP [i, j] contains the probability that the �rst person who draws a stone will win the game if
the bag initially contains i black stones and j white ones.

There will always be at least one black pebble to start the game, and in such a case, it is not de�ned
who will win, so the �rst row of DP is not meaningful. Nevertheless, we will use this row in the DP
table to calculate other entries.

Calculation of an entry:

We initialize DP as follows: If there are 0 white pebbles, the last person who draws a pebble wins.
Thus set D[i, 0] to 0 if i is even, and otherwise set it to 1. The �rst row, DP [0, .] is not meaningful, but
initialize it 0.
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Suppose that someone, Person A, is about to pull a stone from the bag with i black stones and j white
stones. Then:

1. With probability i
i+j , Person A draws a black stone. If i = 1, Person A wins. If i > 1, we play

a “subgame” with i − 1 black stones and n white stones, except with their adversary, Person B,
drawing �rst. The probability that Person B wins the subgame is stored in entry DP [i − 1, j].
In either case, if Person A draws a black stone, they will win with probability 1−DP [i− 1, j].
When i = 1, this is true because we initialized the �rst row of DP to zero.

The probability that Person A pulls a black stone and then proceeds to win the game can be
obtained by: i

i+j (1−DP [i− 1, j]).

2. With probability j
i+j , Person A draws a white stone. In this case, we play a subgame with i black

stones and j − 1 white stones, with Person B drawing �rst. The probability that Person B wins
the ensuing subgame is 1−DP [i, j − 1],

The probability that Person A pulls a white stone and then proceeds to win the game is j
i+j (1−

DP [i, j − 1]).

Each entry depends on the entry above it, and the entry to the left of it.

Calculation order: We can calculate the entries of DP row-by-row from top to bottom, and then
within each row from left to right.

Reading the solution: DP [m,n] contains the probability that Tim wins the game.

Then, use the following dynamic programming rule to �nd P (i, j):

When m = 5 and n = 5, DP is:

0 0 0 0 0 0
1 .5 .667 .5 .6 .5
0 .667 .333 .6 .4 .571
1 .25 .7 .35 .629 .393
0 .8 .267 .686 .343 .635
1 .166 .762 .286 .683 .341

The probability of Tim winning is .341.

Submission: On Monday, 26.11.2018, hand in your solution to your TA before the exercise class starts.
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